Brainstem strokes associated with vertigo or hearing symptoms

Timothy C. Hain, MD • Page last modified: May 1, 2022

The purpose of this page is to consider the findings in brainstem strokes in detail. More general aspects of brainstem strokes and TIA's related to vertigo are considered elsewhere.

There are a large number of well described brainstem stroke syndromes. Most of these involve ischemia in the distribution of the basilar or vertebral arteries, as shown to the right. Here we will describe the most common syndromes. Many of them are somewhat overlapping, especially around the midbrain.

Thus there are many eponymic brainstem syndromes: basically people like to stick their name on a collection of unusual neurological findings. We don't think this has much purpose -- we would rather just have people remember brainstem anatomy. Still, this is history.

Eponym Site Cranial Nerves Tracts Signs Usual Cause
Weber Base of Midbrain III Corticospinal Oculomotor palsy with crossed hemiplegia Vascular, tumor
Claude Midbrain tegmentum III Red nucleus and Brachium Conjunctivum

Oculomotor nerve, contralateral hemiplegia of lower facial muscles, contralateral hemiparesis, contralateral ataxia.

Vascular, tumor
Benedict Midbrain tegmentum III Red nucleus, corticospinal tract, brachium conjunctivum Oculomotor palsy, contralateral cerebellar ataxia, corticospinal signs, Rubral tremor Vascular, tuberculoma, tumor
Nothnagel Midbrain tectum Unilateral or bilateral III Superior cerebellar peduncles (seems pretty close to Wernekinck). Ocular palsies, paralysis of gaze, cerebellar ataxia Tumor
Parinaud Dorsal Midbrain     Paralysis of upward gaze and accommodation, fixed pupils, retraction nystagmus Pinealoma, hydrocephalus
Wernekinck Decussation of superior cerebellar peduncle. Parts of 3rd nerve (upgaze problems)   INO, ataxia, palatal tremor (not required) Stroke -- usually bleed
Millard-Gubler and Raymond-Foville Base of Pons VII and sometimes VI Corticospinal tract Facial and 6th palsy, contralateral hemiplegia, sometimes gaze palsy Vascular,tumor
Avellis Medulla tegmentum X Spinothalamic, sometimes pupillary fibers Paralysis of soft palate and vocal cord and contralateral hemianesthesia Infarct or Tumor
Jackson Medulla Tegmentum X,XII Corticospinal Avellis plus ipsilateral tongue Infarct or Tumor
Wallenberg Medulla, lateral tegmentum Spinal V,IV,X,XI Lateral STT,Descending Pupil fibers, Spinocerebellar and olivocerebellar tracts Ipsi V, IV, X, XI palsy, Horner's, cerebellar ataxia. Contra pain and temp Vascular - Pica or vertebral


Symptoms of brainstem stroke

Clinically, in localizing strokes to the brainstem one looks for the "cardinal" feature of an ipsilateral peripheral cranial nerve involvement, and a contralateral weakness or sensory deficit. Cerebellar signs, if present, should be ipsilateral. MRI is frequently needed to make a specific diagnosis and to separate vascular etiologies from tumor and other structural injuries. The pattern of sensory disturbance may be helpful. A dissociated sensory deficit over the face or half the body usually indicates a lesion within the brainstem. A hemisensory loss involving all modalities indicates a lesion in the upper brainstem, in the thalamus, or deep in the white matter of the parietal lobe.  Bilaterality of both motor and sensory signs is almost certain evidence of a brainstem lesion. When hemiplegia or hemiparesis and sensory loss are coextensive, the lesion usually lies supratentorially.

Vertigo (spinning) is a common early symptom of brainstem strokes. However, because strokes are much less common than other sources of vertigo such as ear disorders, vertigo is only caused by central nervous system problems (including stroke) about 5% of the time. Migraine is a common cause of vascular vertigo.

Hearing disturbance is a much less common symptom of brainstem stroke than vertigo. This may reflect the resilience of the wiring pattern of hearing in the brainstem which includes of both crossed and uncrossed pathways, or factors related to details of the blood supply or resistance of the ear to disturbances in blood supply.

Recently there has been much ado about a diagnostic mnemonic for central vertigo the "HINTS" plus. This acronym means "Head impulse, nystagmus, test-of-skew, hearing" (Saber et al, 2014). This basically is a distillation of clinical logic -- people who have no vestibular function one one side (i.e. positive head impulse) or with hearing symptoms are more likely to have an inner ear problem. People with a skew are more likely to have a central otolith pathway problem. The HINTs requires experience and clinical judgement, but it can be done very quickly, as opposed to the more accurate MRI, which can take as long as 48 hours to be positive.

Causes of brainstem stroke -- the basics

Strokes may be ischemic (lack of blood flow), or hemorrhagic (leakage of blood into the brain). Risk factors for stroke are considered here.

Ischemic strokes are caused by blockage of blood vessels.

The blocks may originate from a distant source -- such as a clot from the heart -- then they are called "emboli". The blocks may result from clotting from within - -then they are called "thrombi". Thrombotic strokes are most often attributed to buildup of cholesterol within blood vessel walls, producing a turbulence and roughening of the wall, onto which a clot forms. Another common cause of thrombotic stroke is a sustained drop in blood pressure -- such as might be due to a cardiac arrest for several minutes. There are just occasional sources of ischemic stroke outside these general two categories (emboli and thrombi). For example, strokes can be caused by mechanical obstruction of blood vessels - -which might happen during a high speed chiropractic manipulation of the neck, or some other event that causes a very forceful neck movement. We have encountered patients who have experienced stroke (as an example), after roller coaster rides.

Hemorrhagic strokes --

leakage of blood within the brain - -are most commonly caused by too high blood pressure. Other possible causes include irregularities in blood clotting, damage to blood vessel walls by various processes (including ischemic stroke). In the brainstem, circuitry is tight and hemorrhagic strokes are often devastating.

cerebral blood vessals class=

Small Vessel Disease:

PICA (posterior cerebellar artery syndrome). 

The PICA syndrome is also known as "lateral medullary syndrome", or "Wallenberg's syndrome", after Wallenberg's description in 1895. This is the most common brainstem stroke. See this link for more detail.

AICA (anterior inferior cerebellar artery syndrome).

The AICA syndrome is usually accompanied by vertigo and unilateral ipsilateral deafness from labyrinthine artery ischemia. It is a common brainstem stroke. See this link for more detail.

Labyrinthine Artery Syndrome

The labyrinthine or internal auditory artery usually takes its origin from AICA, but it can also take origin from PICA or the basilar artery. It supplies the inner ear. In the internal auditory canal or IAC it supplies Scarpa's ganglion. After exiting it divides into the common cochlear artery and anterior vestibular artery. The common cochlear artery further divides into the main cochlear artery and the vestibulocochlear artery, the latter forming the posterior vestibular artery and the vestibular ramus. The main cochlear artery supplies the apical 3/4 of the cochlea, and the cochlear ramus, the basal 1/4 (high frequencies). The posterior vestibular artery supplies the inferior saccule and the ampulla of the posterior SCC. The anterior vestibular artery is a smaller artery that supplies the utricle, superior saccule, and ampulae of the anterior and lateral semicircular canals (Kim et al, 1999). The labyrinthine artery is an end-artery, and as such may be relatively more vulnerable than other circulations.

Diagnosis may be difficult because the brain may show no lesion. This is a small blood vessel and imaging studies such as CT-angiography or MRA may miss it. Contrast is absolutely necessary (during MRA).

SCA (superior cerebellar artery syndrome).

Main symptoms are ipsilateral cerebellar ataxias (middle and/or superior cerebellar peduncles), nausea and vomiting, slurred (pseudobulbar) speech, loss of pain and temperature over the opposite side of the body. Partial deafness, tremor of the upper extremity, an ipsilateral Horner syndrome and palatal myoclonus have been reported. Clinically, this stroke may be impossible to distinguish from a partial AICA or PICA territory stroke. It is much rarer than either one. Ocular pulsion away from the side of lesion has been reported in SCA syndrome. Diagnosis of the stroke is via MRI.

Midbrain syndromes

The midbrain is supplied by branches of the posterior cerebral, posterior communicating, posterior choroidal, collicular and superior cerebellar arteries.

In Weber's syndrome, there is damage to the midbrain, including the fascicles of the 3rd nerve within the midbrain and also there is damage to the pyramidal tract prior to it's decussation (cerebral peduncle area). This results in an ipsilateral 3rd nerve palsy combined with a contralateral hemiplegia. There may also be damage to the substantial nigra resulting in parkinsonism (contralateral), reduced movement of lower facial muscles, This syndrome can arise from damage to the SCA.

Weber's Syndrome
Webers Webers
Infarct of the lateral midbrain resulting from an aneurysm of the superior cerebellar artery. The lesion here is just posterior to the cerebral peduncle. Illustration of Weber's lesion from Wikipedia. Note that this image is upside down if one compares it to the MRI to the left: By Madhero88 - Own work, CC BY-SA 3.0,


Benedict's syndrome.

Infarct in Red Nucleus
Acute MRI Image on L shows T1, on R shows diffusion. There is no blood flow in the left midbrain, involving the red nucleus area. This is an example of Benedict's syndrome.


In Benedikt's syndrome, another midbrain syndrome, there is damage to the red nucleus. This can cause tremor. See the table above for other symptoms. This patient (years later), still has a "wing beating" tremor on the right side, i.e. a "rubral" tremor. Note that the lesion is on the left. The tremor developed several months after her stroke. This tremor is also called a "Holme's tremor" as well as has several other names. Benedikt was a Viennese neurologist, best known for his controversial research suggesting that there were specific differences between normal and "criminal" brains.

In Claude's syndrome, there may be damage to the oculomotor nuclei, and ataxia on the opposite side. Claude was a French psychiatrist and Neurologist. He also introduced Freudian theories into French psychiatry.

A rare syndrome -- Wernekinck syndrome, consists of INO, bilateral ataxia and palatal tremor (Dai and Wasay, 2006; Liu et al, 2012). The lesion is in the decussation of the superior cerebellar peduncles. This would appear to be lesion in the Guillain-Molleret triangle that causes palatal myoclonus (red nucleus, dentate nucleus, inferior olive). One would think that this syndrome could be due to lesions elsewhere as the Guillain Molleret triangle includes a long tract in the pons (the central tegmental tract), that is close to the MLF. In other words, we are dubious that this collection of symptoms is specific for a single lesion.

Voogd and van Baaren, 2013 feel that palatal tremor is not a necessary part of Wernekinck, as other tracts are responsible for OPM.

Midbrain/Thalamic hemorrhages

Below is a movie of mixed torsion and shimmering pendular in a case having this stroke

Midbrain vascular malformation Thalamic vascular malformation
Midbrain Vascular malformation Thalamic portion of same vascular malformation

Midbrain hemorrhages can cause very devastating nystagmus, often with twisting eye movements presumed due to involvement of the interstitial nucleus of Cajal. In the patient whose images are shown above, there is a very rapid but small amplitude horizontal nystagmus, apparently pendular, not always present, superimposed on a constantly present nystagmus with fast phases going up and twisting to the right side. The right eye is lower than the left. This is presumably due to a combination of an interstitial nucleus of Cajal lesion in the midbrain, and an unknown driver for the very rapid horizontal nystagmus.

Pontine hemorrhage.

This is a catastrophic event, typically a hypertensive bleed. It presents with of coma, quadriplegia, small reactive pupils and absent horizontal eye movements. In most quadriplegic patients a hematoma in the middle of the pons is centered at the junction of the tegmentum and basis pontis. Ocular bobbing is a less constant feature. Lateral tegmental hemorrhages present with 1 1/2 syndrome, small reactive pupils, limb ataxia of the cerebellar type, and contralateral hemisensory loss (Caplan and Goodwin, 1982). Those that survive may develop oculopalatal myoclonus. Diagnosis may be made via MRI (best) or CT scan, or a combination of both.

MRI scan of person with central pontine myelinolysis. Sagittal view The dark area inside the circle is the region of damage.

© Timothy C. Hain, M.D.

MRI scan of person with central pontine myelinolysis, axial view. Note the "I" shaped area in the center of the pons.

Pontine hyperintense lesions.

Pontine WM Pontine white matter
Increased white matter signal on Flair in pons, associated with upbeating nystagmus and ataxia. Another example of a pontine white matter lesion, seen on T2 Flair in the pons, associated with ataxia.

It is common to encounter areas of increased signal on T2 MRI in the pons in older persons with unsteadiness. Most commonly this is attributed to vague sources such as "small vessel disease".These patients often display symptoms of disequilibrium. (Kwa et al, 1998). In the author's experience, these patients often exhibit rebound nystagmus, which is a variant of gaze-evoked nystagmus. Some of these patients have upbeating nystagmus supine, often confused with BPPV. Individuals with midline pontine infarcts usually have normal ABR testing (Faught and Oh, 1985).

A rare source of pontine hyperintense lesions is central pontine myelinolysis (see above). This is caused by rapid fluctuations in electrolyte status, usually in the context of a hospitalization. The individual shown above had a liver transplant done. After the liver transplant, he was fine for a couple of days but then gradually became comatose. His MRI at that time showed the picture above. Examination nine months later revealed an ambulatory individual with some mild cerebellar signs. About 2% of persons with liver transplant develop central pontine myelinolysis.

Medial medullary infarction (syndrome of Dejerine).

0.5% of all brain infarcts. Contralateral hemiparesis sparing the face, hemisensory loss of the posterior column type (contralateral). Weakness of the tongue is ipsilateral to the infarct. Pathology may be in vertebral artery or mesial limb of vertebral artery after PICA. Upbeat nystagmus may occur (as also occurs in pontine white matter disorders, see above). Small vessel disease (diabetes, hypertension, hypercholesterolemia) is the usual cause proposed by radiologists.


Larger Vessel Disease

Vertebrobasilar Insufficiency

Decreased blood flow in the vertebrobasilar system is invoked as a potential explanation for a myriad of symptoms possibly attributable to the brainstem.

At this writing (2019) MRA (with contrast) is the best way to establish this diagnosis. MR has advanced considerably over the last decade. CT angiography, in our opinion, should not be used because of the greater radiation load and also because of the poorer resolution. CT angiogram is particularly prone to error because of the computer reconstruction technology where the computer guesses where the blood vessels go. It does make for very pretty pictures however. Conventional angiography is the most reliable way to infer the diagnosis, but is usually unreasonably risky compared to MRA.

MRA can easily be done poorly, and one ideally wants it done with contrast and on a high-field scanner. Radiology departments can still easily provide useless results, but at least one can repeat it without danger to the patient. Recently radiology departments have been refusing to follow instructions and perform MRA with contrast. We can only presume that this is related to insurance issues.


CT angiogram showing a hypoplastic right vertebral, in a person with symptoms of vertebrobasilar insufficiency. Left vertebral (left lower) is large and dominant. Right vertebral (right lower) is small and hypoplastic. This is the same case as shown in the selective vertebral angiogram below.

This is a dramatic image, but it is built with computer software that has some artistic license. We prefer MRA.

Considerable discussion of imaging for the vertebral arteries can be found on the cervical vertigo page.

Basilar Artery Thrombosis and stenosis: 

As the basilar artery supplies most of the brainstem, occlusion is commonly catastrophic resulting in quadriplegia. Death from respiratory failure is common. The "locked in syndrome", denoting a state where the unfortunate patient can think and see but may be unable to respond may occur.   Occlusion of the "top" of the basilar artery can result in a large number of complex syndromes that may include visual hallucinations, somnolence, various ocular findings mainly involving vertical gaze and/or convergence/retraction nystagmus (such as is mainly reported in Parinaud's). The classic paper is by Kubik and Adams (1946) . Diagnosis is via MRI/MRA.

basilar artery basilar stenosis

The left image above is from a patient who had a whiplash type auto accident, and a week later became comatose. She was diagnosed with a basilar artery occlusion. She eventually woke up but had very profound neurological findings including ataxia and a disjunctive nystagmus. The image above shows severe damage to the left cerebellar hemisphere.

The right image above shows an extremely narrow basilar artery.

Cerebellar stroke from vertebral occlusion Poor vertebral arteries

Vertebral artery thrombosis:

Usually manifests as PICA territory infarct. Bilateral occlusions are much rarer than unilateral, and have a slowly progressive course and poor prognosis (Caplan, 1983). MRA combined with MRI is usually the best way to make this diagnosis. CT angiography is sometimes used in the emergency department, where it can be obtained rapidly but with the cost of exposing the patient to dye and radiation. Considerable discussion of imaging for the vertebral arteries can be found on the cervical vertigo page.

On the left is a cerebellar stroke that occurred in a man who had been treated for Meniere's disease for about 20 years. This diagnosis was well supported. His ongoing dizziness as attributed to progression of his Meniere's disease, for which there was ample evidence. He had controlled hypertension and hyperlipidemia. Unexpectedly he was admitted for a posterior circulation stroke (above left shows cerebellar infarct). On the above right, CT angiography documented complete occlusion of the proximal right vertebral artery, severe stenosis of the basilar artery, and a very small left vertebral artery. Thus this patient had both severe Meniere's disease as well as severe vascular disease. Fortunately this is a very rare situation.

Carotid Occlusion

Carotid disease rarely causes vertigo. This is because the parts of the brain that control motion perception are in the back, and are supplied by different arteries (the vertebral and basilar arteries). When carotid disease is severe, and accompanied by disease in the back arteries, carotid disease can be associated with vertigo, but this is unusual. Diagnosis is via MRA, doppler, or angiography.