menu Contact Us Dizzy Patients Health Care Providers Research BPPV DVD Tai Chi DVD Understanding Dizziness Acknowledgements Disclaimer Quoting

Migraine Genetics

Timothy C. Hain, MD Page last modified: December 18, 2016

Other pages on migraine

Overview

The common dogma is that 50% of patients with migraine have first degree family member with migraine (Persico et al, 2015). This not such a great feat of course, as with a condition that affects 15% of the population, it would seem difficult NOT to have a family member. Lets see -- mother, father -- thats a 30% chance right there. A sibling -- we are now up to 45%.

Now that the human genome has been sequenced, one would think that we could figure out what gene(s) cause migraine. This presumes that "migraine" IS a disease, which seems rather unlikely now in view of recent genetic findings. The number of single gene variants of migraine are very few. Lets take a look at what the review articles say.

Ducros (2013) stated that "Since 2010, three large genome-wide association studies (GWAS) have identified six genetic variants associated with migraine. Each variant has only a modest contribution to the overall genetic risk of migraine, suggesting a marked genetic heterogeneity." -- "The vast majority of the migraine genes are still to be identified."

More recently, Nyholt and van den Maagedenberg (2016) stated that "Genome-wide association studies (GWAS) have revealed over a dozen genetic factors robustly associated with the common forms of migraine. " OK -- we went from 6 to 12 in 3 years. Trolner et al (2015) stated that "Common forms of migraine (both with and without an aura), instead, are thought to have a polygenic makeup".

Persico et al (2015) stated that "Common variants identified by GWAS collectively con- tribute to migraine pathogenesis each exerting a small effect size, with ORs below 1.3 as typically occurs in complex disorders".

Lets think about this for a second - - 12 genes. Each one, either present or absent. That provides 2 to the 12th possible genetic patterns -- 4096. Some of these genes might be for headache, some for photophobia, some for vertigo .. lots of possibilities here.

So it looks that as genetic research progresses, things are rapidly going from simple to complex- -we are not finding the "migraine gene", we are finding a cloud of genes, each of which contributes slightly to the probability that someone will be diagnosed as "migraine". As they say, the devil is in the details.

Exceptions to the polygenetic inheritance

There are a small number of exceptions to the general rule that migraine is polygenetic. These are good candidates for "splitting" them out from "migraine" into other entities. In general, it is unproductive to test patients with migraine for these disorders, because they are so extremely rare. Of course, studies attempting to link these single genes to the larger population of migraine have all failed, as the GWAS studies noted above demostrate that the collection of symptoms termed "migraine" is actually polygenetic.

Familial Hemiplegic Migraine: This is a rare condition, considered to be a "subtype" of migraine (Silberstein and Dodick, 2013). It shares the trait of headache with migraine, but differs because of the very pronounced stroke symptoms or strokes themselves. These patients do not "blend" into the general migraine population. Reasonably, one might rebrand them as "Familial Hemiplegic Headache".

CADASIL is another genetic disorder -- it stands for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. This is extremely uncommon. The NOTCH3 gene is responsible. (Takeshima and Nakasnima, 2005). We see no reason to call "CADASIL" migraine at all. Studies attempting to link NOTCH3 mutations with the larger population of migraine have failed (e.g. Borroni et al, 2006; Schwaag et al, 2006)

MELAS -- mitochondrial encephalopathy with lactic acidosis and stroke is another exceedingly rare genetic disorder, in this instance involving the mitochondria, with stroke. Most studies attempting to link MELAS mutations with the larger population of migraine have failed. (e.g. Klopstock et al, 1996; Di Gennaro et al, 2000) Again, we see no reason to call MELAS "migraine" at all.

Implications for the future

It seems to us that the core problem is that Migraine is just a set of symptoms -- defined by the International Headache Society. This is not at all the same as diabetes (defined basically by persistent high blood sugar), brain cancer (abnormal MRI), or infections (organisms detected). In other words, "migraine" may be actually a collection of genetic traits, lumped together for simplicity. The lumping is not all that simple, as the IHS document on headache now extends to about 165 pages.

The genetic data would suggest that we do not really have a "disease" in migraine - - rather we have a list of symptoms that often occur in clusters, and that also are sometimes modified by medications. For the most part, prevention medications that "work" seem to be ones that reduce sensory input (such as triptans), or quite down irritable neurons (such as anticonvulsants).

It is important that many headaches are alleviated by triptans, or perhaps prevented by various antidepressants, seizure medications, or blood pressure medications. On the other hand, given that "migraine" appears to be a chance collection of genetic risk factors, suggesting that this or that medication will always work for "migraine" seems naive. Rather, it seems right now that we have a trial/error process.

To make progress with migraine treatment in the future, it seems likely that we will have to start splitting up "migraine" into smaller collections of symptoms, hopefully that can be associated with response to treatments. Treatment for head pain is fairly well advanced, but treatment for sensory problems such as photophobia, phonophobia, allodynia, etc, is very scanty.

 

References:

 

Copyright December 18, 2016 , Timothy C. Hain, M.D. All rights reserved. Last saved on December 18, 2016